Received: 21.04.2018; Revised: 03.05.2018; Accepted: 18.05.2018

ISSN: 2394-1405 (Print)

RESEARCH PAPER

On identification of block level road network efficiency in the backward regions of West Bengal

SELIM CHISTI

Assistant Professor Department of Economics, Sabang Sajanikanta Mahavidyalaya Temathani, Lutunia, Paschim Medinipur (W.B.) India

ABSTRACT

In 2017 NITI Aayog identified 115 backward districts in India among which there exist 5 backward districts in West Bengal. . Govt. of India proposes to work with the States to launch a special initiative to rapidly transform these 115 backward districts by their specific developmental needs. The policy makers should focus on these backward districts so that these districts can reap the benefits of development potential. The policy makers have to concentrate on lot of policy measures like poverty alleviation, increases in education and health spending, and so on. Whatever may be the policy measure, infrastructure is the very basic component of any policy measure aimed at eliminating deprivation of these backward districts. Efficient infrastructure warranting accessibility attracts centres of production and consumption and thus impacts positively on the regional economy. More efficient infrastructures enable a better mobility for people and goods as well as a better connection between regions. Greater connectivity of road network is a necessary condition for socio-economic progress of most backward regions (Roy and Bhandari, 2003). This paper tries to identify the Block-level road network efficiency of backwards districts of West Bengal identified by NITI Aayog.

Key Words: NITI Aayog, Infrastructure, Backward district, West Bengal, Road network

INTRODUCTION

Transport network is one the crucial factor for competitive performance and internationalization of regional economies. The development of effective transport connectivity creates a significant contribution to the addition to the potential productivity of a region or of an economy. Road transport is relatively economic mode of transport for short and medium distance because it transports perishable goods at a faster speed by road carriers, it helps people to travel and carry goods from one place to another, even in remote and inaccessible areas where other means of transport do not exist, like hilly, tribal, desert, forest, border and backward areas, it provides frequent loading and unloading at any destination and it prevents the pilferages and wastage of the produce (Mamoria and Goel, 1979). Economic efficiency refers to the degree that consumer benefits provided by a good exceed the costs of producing that good. From this perspective roads are most efficient if managed or priced to favor higher-value trips and more resource-efficient modes over lower-value trips and less efficient modes.

How to cite this Article: Chisti, Selim (2018). On identification of block level road network efficiency in the backward regions of West Bengal. *Internat. J. Appl. Soc. Sci.*, **5** (9&10): 761-768.

Survey of Literature:

Lot of studies in developing countries have showed the importance of transport infrastructure for economic development of backward regions. Influence of the new transport links was very strong which was shown by World Bank on the basis of case studies in India, Pakistan and Brazil (Creightney, 1993; Lall and Shalizi, 2001). Road improvements facilitated the marketing of local products. After the improvement of road network in Lao P.D.R, petty traders visited the villages more regularly, and there had been also an increase in the production of cash crops, an increase in cottage industry production for the market and an increase in selling trips to the market (Chris, 1998). Africon (2004) investigated the impact of improvements of the feeder road network in the Copper belt of Zambia. The study indicated that economic activities involved self employment among both men and women, and constituted a wide range of economic activities such as trading, logging, saw milling, carpentry, wood fuel selling, vending, beer brewing, baking, sewing, knitting and vending in makeshift markets. Agriculture was found as an alternative economic activity to mining, for economic growth. The study indicated that many individual farmers organized their own transport to market places in the urban centers due to a lack of a mechanism such as an agricultural marketing board to Aderamo and Magaji (2010) examined the relationship between road network development and the distribution of public facilities in Edu Local Government Area of Kwara State, Nigeria. This study showed that rural road network had significant effect on the distribution of facilities in rural areas and had the potential of reducing poverty. Improved rural accessibility and mobility are capable of reducing the level of poverty of rural people because the basic necessities of life such as healthcare delivery, education, postal services and customary courts will be closer to them (Howe, 1981; Levy, 1996). Baldwin (1996) examined the role of Appalachian highways for many local communities, focusing on the economic impacts that highways have on rural areas. He pointed out the effect of the Appalachian Development Highway System (ADHS) in attracting manufacturing plants along highway corridors. He advocated the need for investment in low-volume rural roads.

METHODOLOGY

Backward regions in West Bengal identified by NITI Aayog:

India is on a high growth trajectory that is expected to lift millions out of poverty. However, presently the quality of life of many of its citizens is not consistent with this growth story, a fact reflected in UNDP's 2016 Human Development Index wherein we are ranked 131 out of 188 countries. A closer look at the data reveals high heterogeneity in the living standards in India. There are significant inter-state and inter-district variations. By uplifting the districts which have shown relatively lesser progress in achieving key social outcome, India can move ahead in the human development index. The 115 districts were identified from 28 states, at least one from each state, in a transparent manner by a committee of Senior Officers to the Government of India, in consultation with State Officials using a composite index of key data sets that included deprivation enumerated under the Socio-Economic Caste Census, key health and education sector performance and state of basic infrastructure. Amongst these 115 districts, five districts of West Bengal, namely, Birbhum, Dakhsin Dinajpur, Malda, Murshidabad and Nadia are identified as 'Backward' by NITI Aayog (GOI, 2018).

Efficiency of road network of backward regions:

In recent researches, efficiency measures are highly used for judging the development scenario

of road network. Two structural measures (e.g. beta and gamma) are widely used as efficiency measures in the current research on road network. Beta index is very simple in respect of calculation and interpretation. It measures the level of connectivity of network. Kansky (1963) recommended this index. It is expressed as the ratio of the number of links (e) to the number of vertices (v).

It is written as -

$$\beta = e / v$$

where, e is the number of edges, and v is the number of vertices.

Higher β values are produced by more sophisticated network structures. Beta index takes the value zero for network, which consists just of vertices without any edges. This index takes the value one and greater where networks are well connected. For example, very simple networks and tree type networks show values less than one, a connected network involving a single circuit has a value of one, while the networks with greater complexity, which includes several circuits have values higher than one. The whole range of the β index is for non-planer graphs from zero to infinity; for planer graphs, the range is from zero to three (Raja and Agarwal, 1986).

In a completely disconnected network, where each edge has two vertices, the beta index is obtained by using the following formula –

$$\beta=e/2e$$

In this case, the beta index takes the numerical value less than one. When the disconnected network changes its structures and its connectivity increases with increasing number of edges for the given number of vertices. The increasing connectivity of the network will be accompanied by a decreasing number of vertices relative to the number of edges and the β index will take higher numerical values (Kansky and Dascoine, 1989).

The gamma index (Garrison and Marble, 1965) is a quotient of the observed number of edges to the maximum number of edges. For a non-planer graph it may be written as –

$$\gamma_{N} = \frac{e}{\frac{v(v-1)}{2}}$$

where γ_N -Gamma index for planer graph.

For planer graphs, the following modified formula is used –

$$\gamma_{P} = \frac{e}{3(v-2)}$$

where γ_P -Gamma index for planer graph

The gamma index varies from zero to one, where zero means that the nodes are not connected at all and one means that the graph is completely connected. Moreover the gamma index can be used as a measure of network efficiency over time because it indicates the progression of a network in time, that is, whether the network in one period has developed or not after some time (Rodrigue, 2004).

RESULTS AND DISCUSSION

Table 1 shows the results of efficiency measures of road transport network of backward regions of West Bengal. In terms of β index, Malda district has the highest value of 1.1259. The districts of Murshidabad and Dakhsin Dinajpur having lower \hat{a} values are in relatively poor position in the state of West Bengal. In respect of gamma index the highest value (0.0791) is found in Murshidabad. The district of Dakhsin Dinajpur has relatively lower efficiency in road network.

SELIM CHISTI

Table 1: Efficiency measures of road infrastructure of backward districts					
District	β	γ			
D. Dinajpur	1.0548	0.0497			
Malda	1.1259	0.0708			
Murshidabad	1.0371	0.0791			
Birbhum	1.1067	0.0610			
Nadia	1.0653	0.0595			

Source: Calculated by Author from data of West Bengal Administrative Atlas, 2001 and District Statistical Handbooks of West Bengal, 2004, BAES.

Block-level efficiency of road network in backward districts:

The picture of block level efficiency of road network of the backward districts is highlighted. The results are shown in Table 2.

Table 2 : Efficiency	y measures of road in	frastructure in blocks of back	ward districts	
Districts	Block Sl. No.	Blocks	β	γ
Dinajpur-S	1	Khusmandi	1.0612	0.0442
Dinajpur-S	2	Harirampur	1.0500	0.0538
Dinajpur-S	3	Banshihari	1.1154	0.0892
Dinajpur-S	4	Gangarampur	1.0606	0.0326
Dinajpur-S	5	Kumargang	1.0250	0.0526
Dinajpur-S	6	Tapan	1.0600	0.0433
Dinajpur-S	7	Balurghat	1.0417	0.0293
Dinajpur-S	8	Hili	1.0250	0.0526
Malda	1	Harishchandrapur-1	1.2000	0.0828
Malda	2	Harishchandrapur-11	1.2222	0.0940
Malda	3	Chanchal-I	1.3200	0.1100
Malda	4	Chanchal-II	1.0417	0.0906
Malda	5	Ratua-1	1.1081	0.0616
Malda	6	Ratua-11	1.1200	0.0933
Malda	7	Gazole	1.0602	0.0259
Malda	8	Bamongola	1.0400	0.0424
Malda	9	Habibpur	1.0260	0.0270
Malda	10	Old Malda	1.0526	0.0376
Malda	11	English Bazar	1.1111	0.0250
Malda	12	Manikchak	1.1111	0.0635
Malda	13	Kaliachak-I	1.1333	0.0782
Malda	14	Kaliachak-II	1.0800	0.0900
Malda	15	Kaliachak-III	1.2632	0.1404
Musshidabad	1	Berhampur	1.0294	0.0307
Musshidabad	2	Beldanga-I	1.1667	0.1014
Musshidabad	3	Beldanga-II	1.2258	0.0817
Musshidabad	4	Nowda	0.9167	0.0797
Musshidabad	5	Hariharpara	1.0000	0.1429
Musshidabad	6	Kandi	1.0930	0.0520
Musshidabad	7	Khargram	1.0800	0.0900
Musshidabad	8	Burwan	0.9853	0.0294

Table 2 contd..

Table 2 contd				
Musshidabad	9	Bharatpur-I	1.0645	0.0710
Musshidabad	10	Bharatpur-II	1.1923	0.0954
Musshidabad	11	Farakka	0.9512	0.0476
Musshidabad	12	Samsergang	0.8800	0.0733
Musshidabad	13	Suti-I	1.0000	0.2857
Musshidabad	14	Suti-II	1.0000	0.0690
Musshidabad	15	Raghunathgang-I	1.0000	0.0357
Musshidabad	16	Raghunathgang-II	1.0000	0.1250
Musshidabad	17	Sagardighi	1.0000	0.0260
Musshidabad	18	Lalgola	1.0000	0.0417
Musshidabad	19	Bhagobangola-I	0.9524	0.0952
Musshidabad	20	Bhagobangola-II	1.0000	0.0952
Musshidabad	21	Msd-Jiagang	1.1449	0.0337
Musshidabad	22	Nabagram	0.9861	0.0278
Musshidabad	23	Domkal	1.0400	0.0867
Musshidabad	24	Jalangi	1.0541	0.0586
Musshidabad	25	Raninagar-I	1.0667	0.0736
Musshidabad	26	Raninagar-I	1.1364	0.1082
Birbhum	1	Murarai-I	1.0702	0.0382
Birbhum	2	Murarai-II	1.0794	0.0348
Birbhum	3	Nalhati-I	1.1786	0.0873
Birbhum	4	Nalhati-II	1.2353	0.1544
Birbhum	5	Rampurhat-I	1.1818	0.1126
Birbhum	6	Rampurhat-II	1.0625	0.0337
Birbhum	7	Mayureshwar-I	1.0526	0.1170
Birbhum	8	Mayureshwar-II	1.0508	0.0362
Birbhum	9	Md.Bazar	1.0000	0.0500
Birbhum	10	Sainthia	1.1373	0.0455
Birbhum	11	Dubrajpur	1.1099	0.0247
Birbhum	12	Rajnagar	1.1351	0.0631
Birbhum	13	Suri-I	1.0864	0.0272
Birbhum	14	Suri-II	1.1081	0.0616
Birbhum	15	Khoyrasol	1.0741	0.0826
Birbhum	16	Bolpur-Shantiniketan	1.1636	0.0431
Birbhum	17	Labhpur	1.1111	0.0419
Birbhum	18	Nanoor	1.1282	0.0594
Birbhum	19	Illambazar	1.0638	0.0463
Nadia	1	Karimpur-I	0.875	0.250
Nadia	2	Karimpur-II	0.667	0.667
Nadia	3	Tehatta-I	0.909	0.182
Nadia	4	Tehatta-II	0.667	0.267
Nadia	5	Kaliaganj	0.909	0.182
Nadia	6	Nakashipara	0.714	0.238

Table 2 contd..

Table 2 contd..

Tuote 2 conta				
Nadia	7	Chapra	0.833	0.400
Nadia	8	Krishnanagar-I	0.909	0.182
Nadia	9	Krishnanagar-II	0.500	1.000
Nadia	10	Nabadwip	0.500	0.333
Nadia	11	Santipur	0.750	0.214
Nadia	12	Hanskhali	0.900	0.200
Nadia	13	Ranaghat-I	0.889	0.222
Nadia	14	Ranaghat-II	0.889	0.222
Nadia	15	Chakdaha	0.750	0.214
Nadia	16	Haringhata	0.909	0.182

Source: Same as Table 1

Dinajpur-S district:

The value of β index lies between 1.0250 and 1.1154. Bansihari block is in the best position in respect of β index and Kumarganj and Hili block are in the worst position regarding the same. Khusmandi block (1.0612) is the 2^{nd} best one and Gangarampur block (1.0606 is the 3^{rd} best one in terms of β index. Balurghat block (1.0417) and Harirampur block (1.0500) have inefficient road network in terms of β index.

The value of γ index lies between 0.0293 and 0.0892. Bansihari block has the best connected road network in respect of γ index and Balurghat block has the worst connected road network regarding the same. Harirampur block (0.0538) has the 2^{nd} best connected road network and Hili and Kumarganj block (0.0526) have the 3^{rd} best connected road network in terms of γ index. Gangarampur block (0.0326) and Tapan block (0.0433) have less connected road network in terms of γ index.

Malda district:

The value of β index lies between 1.0260 and 1.3200. Chanchal-1 block is in the best position in respect of β index and Habibpur block is in the worst position regarding the same. Kaliachak-111 block (1.2632) is the 2^{nd} best one and Harishchandrapur-11 block (1.2222) is the 3^{rd} best one in terms of β index. Bamongola block (1.0400) and Chanchal-II block (1.0417) have inefficient road network in terms of β index.

The value of γ index lies between 0.0250 and 0.1404. Kaliachak-111 block has the best connected road network in respect of γ index and Englishbazar block has the worst connected road network regarding the same. Chanchal-1 block (0.1100) has the 2^{nd} best connected road network and Ratua-11 block (0.0933) has the 3^{rd} best connected road network in terms of γ index. Gazole block (0.0259) and Habibpur block (0.0270) have less connected road network in terms of γ index.

Murshidabad district:

The value of β index lies between 0.8800 and 1.2258. Beldanga-11 block is in the best position in respect of β index and Samserganj block is in the worst position regarding the same. Bharatpur-11 block (1.1923) is the 2nd best one and Msd-Jiaganj block (1.1449) is the 3rd best one in terms of β index. Nowda block (0.9167) and Farakka block (0.9512) have inefficient road network in terms of β index.

The value of γ index lies between 0.0260 and 0.2857. Suti-1 block has the best connected road

network in respect of γ index and Sagardighi block has the worst connected road network regarding the same. Hariharpara block (0.1429) has the 2nd best connected road network and Raghunathganj-11 block (0.1250) has the 3rd best connected road network in terms of γ index. Nabagram block (0.0278) and Burwan block (0.0294) have less connected road network in terms of γ index.

Birbhum district:

The value of β index lies between 1.0000 and 1.2353. Nalhati-11 block is in the best position in respect of β index and Md. Bazar block is in the worst position regarding the same. Rampurhat-1 block (1.1818) is the 2nd best one and Nalhati-1 block (1.1786) is the 3rd best one in terms of β index. Mayureshwar-11 block (1.0508) and Mayureshwar-1 block (1.0526) have inefficient road network in terms of β index.

The value of γ index lies between 0.0247 and 0.1544. Nalhati-11 block has the best connected road network in respect of γ index and Dubrajpur block has the worst connected road network regarding the same. Mayureshwar-1block (0.1170) has the 2nd best connected road network and Rampurhat-1 block (0.1126) has the 3rd best connected road network in terms of γ index. Suri-1 block (0.0272) and Murarai-1 block (0.0382) have less connected road network in terms of γ index.

Nadia district:

The value of β index lies between 0.500 and 0.909. Tehatta-I, Kaliaganj, Krishnanagar-I and Haringhata blocks are in the best position in respect of β index and Krishnanagar-II and Nabadwip blocks are in the worst position regarding the same.

The value of γ index lies between 0.182 and 1.000. Krishnanagar-II block has the best connected road network in respect of γ index and Tehatta-I, Kaliaganj and Haringhata blocks have the worst connected road network regarding the same.

REFERENCES

- Aderamo, A.J. and Magaji, S.A. (2010). Rural Transportation and the Distribution of Public Facilities in Nigeria: A Case of Edu Local Government Area of Kwara State. Department of Geography, University of Ilorin, Ilorin, Nigeria, *J. Hum. Ecol.*, **29**(3):171-179.
- Africon (2004). Feasibility Study for the Improvement of the Feeder Road Network on the Copper belt, Final Report.
- Baldwin, F.D. (1996). Appalachian Highways: Almost Home but a Long Way to Go. Appalachia, 29 (2): 4-13.
- Chris, D. (1998). *Recommendations for Improving the Rural Road Network in Lao .D.R.*, Vientiane, Lao PDRUNDP/Sida/ILO, Project LAO/95/001, IRAP.
- Creightney, C. (1993). Transport and Economic Performance: A Survey of Developing Countries, Report, World Bank.
- Garrison, W.L. and D.F. Marble (1965). A Prolegomenon to the Forecasting of Transportation Development, U.S. Army Aviation Material Labs Technical Report, Office of Technical Services, U.S. Department of Commerce.
- GOI (2018). Transformation of Aspirational Districts, Baseline Ranking & Real-time Monitoring Dashboard.
- Howe, J. (1981). *Impact of Rural Roads on Poverty Alleviation: A Review of the Literature*. International Labour Office Income Distribution and Employment Programme, Working Paper No: 106, Geneva, International Labour Organization.

SELIM CHISTI

- Kansky, K. and Dascoine, P. (1989). Measures of Network Structures, Persee, Scientific J., 5:89-121.
- Kansky, K.J. (1963). *Structure of Transportation Network*, University of Chicago, Department of Geography, Research Paper No: 84.
- Lall, S. and Shalizi, Z. (2001). Agglomeration Economies and Productivity in Indian Industry, Working Paper, World Bank.
- Levy, H. (1996). *Socio-economic Influence of Rural Roads Operation*, Kingdom of Morocco Evaluation Report, Evaluation Department, Washington D.C., The World Bank.
- Mamoria, C.B. and Goel, A. (1979). *Economic and Commercial Geography of India*, Shiv Lal Agarwal and Company, Agra.
- Raza, M and Agarwal, Y. (1986). Transport Geography of India, Concept Publishing Company, New Delhi.
- Rodrigue, J. (2004). Transport Geography of Logistic and Freight Distribution. *J. Transport Geography*, **12** (3):171-184.
- Roy, B. and Bhandari, L. (2003). District-level Deprivation in the New Millennium, BRICS.
